fulltext.study @t Gmail

PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy

Paper ID Volume ID Publish Year Pages File Format Full-Text
7244 542 2011 9 PDF Available
Title
PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy
Abstract

Although PEGylated TNF-related apoptosis-inducing ligand (PEG-TRAIL) has good tumor cell specificity and stability, its therapeutic potential is restricted by the development of tumor cell resistance. The purpose of this study was to develop an effective combination therapy with sustained biological activity based on microspheres. Doxorubicin (DOX), PEG-TRAIL, and DOX plus PEG-TRAIL (dual agent) were microencapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres using a double-emulsion solvent extraction method. Prepared dual agent microspheres showed the encapsulation efficiency 69.4 ± 2.3 for DOX and 87.7 ± 2.9% for PEG-TRAIL. Potential anti-tumor efficacy of this system was investigated in vitro and in vivo in a human colon cancer (HCT116) and in a human prostate cancer (PC-3). DOX and PEG-TRAIL release from dual agent microspheres were biologically active and significantly inhibited the TRAIL-sensitive HCT116 and resistant PC-3 cells in vitro. Dual agent microspheres simultaneous delivery of DOX and PEG-TRAIL was superior to all other DOX or PEG-TRAIL microspheres in vivo. A single local injection of PLGA microspheres loaded with low amounts of DOX, PEG-TRAIL, or dual agent resulted in 14.8, 30.2, and 63.6% reductions in HCT116 tumor volume and 20.4, 14.2, and 67.7% reductions in PC-3 tumor volume at 35 days. Our findings show that dual agent microspheres offer a promising means of delivering DOX and PEG-TRAIL to tumor sites.

Keywords
PEG-TRAIL; Doxorubicin; Sequential delivery; Microspheres; Combination therapy
First Page Preview
PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 33, November 2011, Pages 8529–8537
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us