fulltext.study @t Gmail

Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics

Paper ID Volume ID Publish Year Pages File Format Full-Text
7287 543 2012 9 PDF Available
Title
Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics
Abstract

In this work, an N-varied dissipative particle dynamics (DPD) simulation technique is applied to investigate detailed endocytosis kinetics for ligand-coated nanoparticles with different shapes, including sphere-, rod- and disk-shaped nanoparticles. Our results indicate that the rotation of nanoparticles, which is one of the most important mechanisms for endocytosis of shaped nanoparticle, regulates the competition between ligand–receptor binding and membrane deformation. Shape anisotropy of nanoparticles divides the whole internalization process into two stages: membrane invagination and nanoparticle wrapping. Due to the strong ligand–receptor binding energy, the membrane invagination stage is featured by the rotation of nanoparticles to maximize their contact area with the membrane. While the kinetics of the wrapping stage is mainly dominated by the part of nanoparticles with the largest local mean curvature, at which the membrane is most strongly bent. Therefore, nanoparticles with various shapes display different favorable orientations for the two stages, and one or two orientation rearrangement may be required during the endocytosis process. Our simulation results also demonstrate that the shape anisotropy of nanoparticles generates a heterogeneous membrane curvature distribution and might break the symmetry of the internalization pathway, and hence induce an asymmetric endocytosis.

Keywords
Nanoparticles; Membrane; Molecular modeling; Endocytosis; Shape anisotropy; Rotation
First Page Preview
Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 19, June 2012, Pages 4965–4973
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us