fulltext.study @t Gmail

The impact of PLGA scaffold orientation on in vitro cartilage regeneration

Paper ID Volume ID Publish Year Pages File Format Full-Text
7321 548 2012 10 PDF Available
Title
The impact of PLGA scaffold orientation on in vitro cartilage regeneration
Abstract

The success of in vitro cartilage regeneration provides a promising approach for cartilage repair. However, the currently engineered cartilage in vitro is unsatisfactory for clinical application due to non-homogeneous structure, inadequate thickness, and poor mechanical property. It has been widely reported that orientation of scaffolds can promote cell migration and thus probably contributes to improving tissue regeneration. This study explored the impact of microtubular oriented scaffold on in vitro cartilage regeneration. Porcine articular chondrocytes were seeded into microtubule-oriented PLGA scaffolds and non-oriented scaffolds respectively. A long-term in vitro culture followed by a long-term in vivo implantation was performed to evaluate the influence of scaffold orientation on cartilage regeneration. The current results showed that the oriented scaffolds could efficiently promote cell migration towards the inner region of the constructs. After 12 weeks of in vitro culture, the chondrocyte-scaffold constructs in the oriented group formed thicker cartilage with more homogeneous structure, stronger mechanical property, and higher cartilage matrix content compared to the non-oriented group. Furthermore, the in vitro engineered cartilage based on oriented scaffolds showed better cartilage formation in terms of size, wet weight, and homogeneity after 12-week in vivo implantation in nude mice. These results indicated that the longitudinal microtubular orientation of scaffolds can efficiently improve the structure and function of in vitro engineered cartilage.

Keywords
Scaffold orientation; PLGA; Cartilage; Tissue engineering
First Page Preview
The impact of PLGA scaffold orientation on in vitro cartilage regeneration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 10, April 2012, Pages 2926–2935
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us