fulltext.study @t Gmail

Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles

Paper ID Volume ID Publish Year Pages File Format Full-Text
7351 550 2011 10 PDF Available
Title
Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles
Abstract

Understanding the processes involved in the cellular uptake of nanoparticles is critical for developing effective nano drug delivery systems. In this paper we found that PEG-b-PLA polymeric micelles firstly interacted with cell membrane using atomic force microscopy (AFM) and then released their core-loaded agents into the cell membrane by fluorescence resonance energy transfer (FRET). The released agents were internalized into the cells via lipid raft/caveolae-mediated endocytosis using total internal reflection fluorescence microscopy (TIRFM) and endocytic inhibitors. Further studies revealed that paclitaxel (PTX)-loaded PEG-b-PLA micelles (M-PTX) increased the cellular accumulation of PTX in PTX-resistant human ovarian cell line A2780/T which resulted in more apoptosis as measured by flow cytometry and the cleavage of poly (ADP-ribose) polymerase (PARP) compared with free PTX. PEG-b-PLA micelles inhibited P-glycoprotein (Pgp) function and Pgp ATPase activity but had no effect on Pgp protein expression. The membrane microenvironment studies showed that PEG-b-PLA micelles induced cell membrane depolarization and enhanced membrane microviscosity. These results suggested that PEG-b-PLA micelles might inhibit Pgp function to reverse multidrug resistance (MDR) via interaction with cell membrane to affect the membrane microenvironment. This study provides a foundation for understanding the mechanism of reversing MDR by nanoparticles better and designing more effective nano drug carriers.

Keywords
Polymeric micelles; Cellular uptake; Multidrug resistance; Paclitaxel; Pgp
First Page Preview
Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 22, August 2011, Pages 5148–5157
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us