fulltext.study @t Gmail

The influence of substrate creep on mesenchymal stem cell behaviour and phenotype

Paper ID Volume ID Publish Year Pages File Format Full-Text
7372 551 2011 15 PDF Available
Title
The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
Abstract

Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.

Keywords
Mesenchymal stem cell; Mechanical properties; Creep; Viscoelasticity; Tension
First Page Preview
The influence of substrate creep on mesenchymal stem cell behaviour and phenotype
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 26, September 2011, Pages 5979–5993
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us