fulltext.study @t Gmail

Biomimetic bone-like composites fabricated through an automated alternate soaking process

Paper ID Volume ID Publish Year Pages File Format Full-Text
739 61 2011 9 PDF Available
Title
Biomimetic bone-like composites fabricated through an automated alternate soaking process
Abstract

Hydroxyapatite–gelatin composites have been proposed as suitable scaffolds for bone and dentin tissue regeneration. There is considerable interest in producing these scaffolds using biomimetic methods due to their low energy costs and potential to create composites similar to the tissues they are intended to replace. Here an existing process used to coat a surface with hydroxyapatite under near physiological conditions, the alternate soaking process, is modified and automated using an inexpensive “off the shelf” robotics kit. The process is initially used to precipitate calcium phosphate coatings. Then, in contrast to previous utilizations of the alternate soaking process, gelatin was added directly to the solutions in order to co-precipitate hydroxyapatite–gelatin composites. Samples were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation. Calcium phosphate coatings formed by the alternate soaking process exhibited different calcium to phosphate ratios, with correspondingly distinct structural morphologies. The coatings demonstrated an interconnected structure with measurable mechanical properties, even though they were 95% porous. In contrast, hydroxyapatite–gelatin composite coatings over 2 mm thick could be formed with little visible porosity. The hydroxyapatite–gelatin composites demonstrate a composition and mechanical properties similar to those of cortical bone.

Keywords
Biomimetic material; Hydroxyapatite; Gelatin; Bone; Mechanical properties
First Page Preview
Biomimetic bone-like composites fabricated through an automated alternate soaking process
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 10, October 2011, Pages 3586–3594
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us