fulltext.study @t Gmail

Dynamic cell behavior on shape memory polymer substrates

Paper ID Volume ID Publish Year Pages File Format Full-Text
7416 552 2011 9 PDF Available
Title
Dynamic cell behavior on shape memory polymer substrates
Abstract

Cell culture substrates of defined topography have emerged as powerful tools with which to investigate cell mechanobiology, but current technologies only allow passive control of substrate properties. Here we present a thermo-responsive cell culture system that uses shape memory polymer (SMP) substrates that are programmed to change surface topography during cell culture. Our hypothesis was that a shape-memory-activated change in substrate topography could be used to control cell behavior. To test this hypothesis, we embossed an initially flat SMP substrate to produce a temporary topography of parallel micron-scale grooves. After plating cells on the substrate, we triggered shape memory activation using a change in temperature tailored to be compatible with mammalian cell culture, thereby causing topographic transformation back to the original flat surface. We found that the programmed erasure of substrate topography caused a decrease in cell alignment as evidenced by an increase in angular dispersion with corresponding remodeling of the actin cytoskeleton. Cell viability remained greater than 95% before and after topography change and temperature increase. These results demonstrate control of cell behavior through shape-memory-activated topographic changes and introduce the use of active cell culture SMP substrates for investigation of mechanotransduction, cell biomechanical function, and cell soft-matter physics.

Keywords
Cell culture; Shape memory; Thermally responsive material; Surface topography
First Page Preview
Dynamic cell behavior on shape memory polymer substrates
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 9, March 2011, Pages 2285–2293
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us