fulltext.study @t Gmail

Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration

Paper ID Volume ID Publish Year Pages File Format Full-Text
7428 552 2011 8 PDF Available
Title
Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration
Abstract

Gene therapy offers great potential for brain glioma. However, therapeutic genes could not reach glioma spontaneously. A glioma-targeting gene delivery system is highly desired to transfer exogenous genes throughout the tumor focus. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the main vector. Chlorotoxin (CTX), which has been demonstrated to bind specifically to receptor expressed in glioma, was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethyleneglycol (PEG), yielding PAMAM–PEG–CTX. The cellular uptake of CTX itself was observed apparently in C6 glioma cells, almost not in 293 cells. The modification of CTX could significantly increase the cellular uptake of vectors and the DNA-loaded nanoparticles (NPs) in C6 cells. The in vivo distribution of PAMAM–PEG–CTX/DNA NPs in the brain was higher than that of PAMAM/DNA NPs and PAMAM–PEG/DNA NPs. Furthermore, the gene expression of PAMAM–PEG–CTX/DNA NPs was higher and broader in glioma than that of unmodified and PEG-modified counterparts. The TUNEL analysis showed a more wide-extended apoptosis in the CTX-modified group, compared to other groups including commercial temozolomide group. The median survival time of CTX-modified group and temozolomide group was 59.5 and 49 days, respectively, significantly longer than that of other groups. The results suggested that CTX could be exploited as a special glioma-targeting ligand, and PAMAM–PEG–CTX/DNA NPs is a potential non-viral delivery system for gene therapy of glioma via intravenous administration.

Keywords
Chlorotoxin; Polyamidoamine; Glioma-targeting; Gene therapy
First Page Preview
Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 9, March 2011, Pages 2399–2406
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us