fulltext.study @t Gmail

Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy

Paper ID Volume ID Publish Year Pages File Format Full-Text
7458 553 2012 10 PDF Available
Title
Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy
Abstract

Doxorubicin (DOX)-loaded glycyrrhetinic acid (GA)-modified alginate (ALG) nanoparticles (DOX/GA-ALG NPs) were prepared for targeting therapy of liver cancer. This study focused on the biodistribution of DOX/GA-ALG NPs in Kunming mice as well as their antitumor activity against liver tumors in situ and side effects. The biodistribution data showed that the concentration of DOX in the liver reached 67.8 ± 4.9 μg/g after intravenous administration of DOX/GA-ALG NPs, which was 2.8-fold and 4.7-fold higher compared to non-GA-modified nanoparticles (DOX/CHO-ALG NPs) and DOX·HCl, respectively. The concentration of DOX in the heart of mice treated with DOX/GA-ALG NPs at any sampling time was relatively lower than that of mice treated with DOX·HCl. The liver tumor growth inhibition rate (IR) in situ was about 52.6% and the mortality was 33% in DOX·HCl group. In contrast, the IR was 76.6% and no mice died in the DOX/GA-ALG NPs group. Histological examination showed tumor necrosis in both experimental groups. Most importantly, the heart cells and the liver cells surrounding the tumor were not affected by administration of DOX/GA-ALG NPs, whereas myocardial necrosis and apparent liver cell swelling were observed after DOX·HCl administration.

Keywords
Glycyrrhetinic acid; Liver targeting; Biodistribution; Antitumor; Liver tumors in situ
First Page Preview
Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 7, March 2012, Pages 2187–2196
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us