fulltext.study @t Gmail

Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood

Paper ID Volume ID Publish Year Pages File Format Full-Text
7503 554 2011 8 PDF Available
Title
Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood
Abstract

A highly efficient process using iron oxide magnetic nanoparticles (IO)-based immunomagnetic separation of tumor cells from fresh whole blood has been developed. The process involved polymer coated 30 nm IO that was modified with antibodies (Ab) against human epithelial growth factor receptor 2 (anti-HER2 or anti-HER2/neu) forming IO-Ab. HER2 is a cell membrane protein that is overexpressed in several types of human cancer cells. Using a HER2/neu overexpressing human breast cancer cell line, SK-BR3, as a model cell, the IO-Ab was used to separate 73.6% (with a maximum capture of 84%) of SK-BR3 cells that were spiked in 1 mL of fresh human whole blood. The IO-Ab preferentially bound to SK-BR3 cells over normal cells found in blood due to the high level of HER2/neu receptor on the cancer cells unlike the normal cell surfaces. The results showed that the nanosized magnetic nanoparticles exhibited an enrichment factor (cancer cells over normal cells) of 1:10,000,000 in a magnetic field (with gradient of 100 T/m) through the binding of IO-Ab on the cell surface that resulted in the preferential capture of the cancer cells. This research holds promise for efficient separation of circulating cancer cells in fresh whole blood.

Keywords
Magnetic nanoparticles; Iron oxide; Cancer cells; Cell sorting; Immunomagnetic separation
First Page Preview
Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 36, December 2011, Pages 9758–9765
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us