fulltext.study @t Gmail

Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor

Paper ID Volume ID Publish Year Pages File Format Full-Text
7544 556 2011 7 PDF Available
Title
Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor
Abstract

Neural stem cells (NSCs) have received much attention in cell-transplantation therapy for central nervous disorders such as Parkinson’s disease. However, poor engraftment of transplanted cells limits the efficacy of the treatments. To overcome this problem, collagen-based hydrogels were designed in this study to provide microenvironments for embedded cells to survive and proliferate. Our approach was to incorporate epidermal growth factor (EGF), known as a mitogen for NSCs, into a collagen hydrogel. For the stable binding of EGF with collagen under mild conditions, EGF was fused with a collagen-binding polypeptide domain by recombinant DNA technology. A cell population containing NSCs was derived from the fetal rat brain and cultured in the composite hydrogels for 7 d followed by analysis for cell proliferation. It was shown that the number of living cells was significantly higher in hydrogels incorporating collagen-binding EGF. This effect is largely owing to the collagen-binding domain that serves to sustain presentation of EGF toward cells within the hydrogel. It is further revealed by gene expression analysis that cells proliferated in the EGF-incorporating collagen hydrogel contained subpopulations expressing the marker of stem cells, neurons, astrocytes, or oligodendrocytes.

Keywords
Collagen; ECM (extracellular matrix); Growth factors; Hydrogel; Neural cell; Stem cell
First Page Preview
Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 21, July 2011, Pages 4737–4743
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us