fulltext.study @t Gmail

Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(amino acid) nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
7567 556 2011 9 PDF Available
Title
Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(amino acid) nanoparticles
Abstract

Physicochemical properties, such as particle size, shape, molecular weight, surface charge and composition, play a key role in the cellular uptake of polymeric nanoparticles. Antigen-encapsulated biodegradable nanoparticles have considerable potential for use in vaccine delivery systems. Although it is accepted that particle size is important for the induction of antigen-specific immune responses in vivo, little is known about how their size affects their intracellular fate. Here, we demonstrate that the size effects on the cellular uptake, intracellular degradation and distribution of protein-encapsulated nanoparticles. We prepared size-regulated ovalbumin (OVA)-encapsulated nanoparticles composed of hydrophobically modified poly(γ-glutamic acid) (γ-PGA). These nanoparticles were efficiently taken up by macrophages, and also delivered encapsulated OVA from the endosomes to the cytoplasm. Comparing 40–200 nm-sized nanoparticles, there was no significant difference in their intracellular distribution. Interestingly, the size of the nanoparticles affected the intracellular degradation of the encapsulated OVA. The uptake of OVA alone by macrophages resulted in early degradation of the OVA. In contrast, the degradation of OVA encapsulated into the nanoparticles was attenuated as compared to free OVA. A difference in OVA degradation kinetics was observed between the particle sizes, the degradation of small nanoparticles was slower than for the larger ones. These results indicate that particle size is an important factor for the intracellular degradation of encapsulated proteins and nanoparticles. These results will provide a rational design of nanoparticle-based vaccines to control immune responses.

Keywords
Nanoparticles; Intracellular degradation; Particle size; Vaccine; Macrophages
First Page Preview
Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(amino acid) nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 21, July 2011, Pages 4959–4967
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us