fulltext.study @t Gmail

Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits

Paper ID Volume ID Publish Year Pages File Format Full-Text
7627 558 2012 10 PDF Available
Title
Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits
Abstract

We describe a hydrogel patterning and transferring (HPT) method that facilitates the quantitative analysis of synthetically engineered genetic circuits within bacterial cells. The HPT method encapsulates cells in the alginate hydrogel patterns by using polydimethylsiloxane (PDMS) template. Then, the hydrogel-encapsulated cell patterns are transferred onto an agarose hydrogel substrate that encapsulates inducer chemicals or bacterial cells. Using the HPT method, we demonstrate that inducers in the agarose hydrogel substrate regulate gene expression of the patterned cells for qualitative analysis by activating the promoters of fluorescence protein genes. In addition, we demonstrate that the HPT method can be used for the analysis of the cross-talk between genetic circuits and the concentration-dependent gene expression and regulation because the agarose hydrogel substrate can produce concentration gradients of inducers. Lastly, we demonstrate that the HPT method can be applied to investigating intercellular communication between neighboring cells with a wide range of cell densities. Since the HPT method is simple to deal with but versatile and powerful to quantitatively analyze genetic circuits in living cells in many controllable manners, we believe that the method can be widely used for the rapid advancement of synthetic, molecular, and systems biology.

Keywords
Hydrogel patterning; Hydrogel transferring; Extracellular induction; Intercellular communication; Gene expression and regulation
First Page Preview
Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 2, January 2012, Pages 624–633
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us