fulltext.study @t Gmail

The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro

Paper ID Volume ID Publish Year Pages File Format Full-Text
7636 558 2012 9 PDF Available
Title
The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro
Abstract

This study demonstrates that zoledronate containing hydroxyapatite nanocrystals (HA-ZOL) can be synthesized as a single crystalline phase up to a zoledronate content of about 7 wt% by direct synthesis in aqueous solution, at variance with what previously found for alendronate-hydroxyapatite nanocrystals (HA-AL). On increasing zoledronate incorporation, the length of the coherent crystalline domains and the crystal dimensions of hydroxyapatite decrease, whereas the specific surface area increases. Full profile fitting of the powder X-ray diffraction patterns does not indicate major structural modifications, but an increase of the hydroxyapatite unit cell, on increasing zoledronate content. These data, together with a structural similarity between hydroxyapatite and calcium zoledronate, suggest a preferential interaction between zoledronate and the hydroxyapatite faces parallel to the c-axis direction. Osteoblast-like MG-63 cells and human osteoclasts were cultured on HA-ZOL nanocrystals and as a comparison on HA-AL nanocrystals containing almost the same (about 7 wt%) bisphosphonate amount. The beneficial influence of bisphosphonates on osteoblast proliferation and differentiation is enhanced when the tests are performed in co-cultures. Similarly, the reduction of osteoclast proliferation and the increase of Caspase 3 production are dramatically enhanced in co-cultures, which highlight an even greater influence of HA-ZOL than HA-AL on osteoclast apoptosis.

Keywords
Bisphosphonates; Hydroxyapatite; Osteoblast; Osteoclast; Co-cultures
First Page Preview
The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 2, January 2012, Pages 722–730
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us