fulltext.study @t Gmail

The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway

Paper ID Volume ID Publish Year Pages File Format Full-Text
7653 559 2011 11 PDF Available
Title
The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway
Abstract

Our previous study indicates that akermanite, a type of Ca-, Mg-, Si-containing bioceramic, can promote the osteogenic differentiation of hASCs. To elucidate the underlying mechanism, we investigated the effect of the extract from akermanite, on proliferation and osteogenic differentiation of hASCs. The original extract was obtained at 200 mg akermanite/ml LG-DMEM and further diluted with LG-DMEM. The final extracts were denoted as 1/2, 1/4, 1/8, 1/16, and 1/32 extracts based on the concentrations of the original extract. The LDH assay and live/dead stain were used to reveal the cytotoxicity of the different extracts on hASCs, while the DNA assay was carried out to quantitatively evaluate the proliferation of cells after being cultured with the extracts for 1, 3 and 7 days. Flow cytometry for cell cycle analysis was carried out on cells cultured in two media (GM and 1/2 extract) in order to further analyze the effect of the extract on cell proliferation behaviors. Osteogenic differentiation of hASCs cultured in the extracts was detected by ALP expression and calcium deposition, and further confirmed by real-time PCR analysis. It was shown that Ca, Mg and Si ions in the extract could suppress the LDH release and proliferation of hASCs, whereas promote their osteogenic differentiation. Such effects were concentration-dependent with the 1/4 extract (Ca 2.36 mM, Mg 1.11 mM, Si 1.03 mM) being the optimum in promoting the osteogenic differentiation of hASCs. An immediate increase in ERK was observed in cells cultured in the 1/4 extract and such osteogenic differentiation of hASCs promoted by released ions could be blocked by MEK1-specific inhibitor, PD98059. Briefly, Ca, Mg and Si ions extracted from akermanite in the concentrations of 2.36, 1.11, 1.03 mM, respectively, could facilitate the osteogenic differentiation of hASCs via an ERK pathway, and suppress the proliferation of hASCs without significant cytotoxicity.

Keywords
Akermanite; Adipose-derived stem cells; Ions; Osteogenesis; Bone tissue engineering; MAPK
First Page Preview
The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 29, October 2011, Pages 7023–7033
Authors
, , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us