fulltext.study @t Gmail

Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking

Paper ID Volume ID Publish Year Pages File Format Full-Text
7703 561 2011 9 PDF Available
Title
Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking
Abstract

The lamellar architecture found in many natural fibrous tissues has a significant bearing on their specific functions. However, current engineered tissues have simultaneously no realistic structures and no adequate functions. This study demonstrates a two-step process for obtaining structurally mimicking laminates in natural fibrous tissues with good optical and mechanical characters from purified-clinically-safe collagen molecules. Stacked lamella structures can be created by repeating flow casting, with the controlling parallel/orthogonal directionalities of each thin single-layer (2–5 μm in thickness). The transparency of laminates is successfully improved by a unique multi-cyclic vitrification with chemical cross-linking. The directionalities of optical and mechanical functions in laminates are strongly related with the preferential collagen alignments in the laminates. The tensile strength of laminates is extremely higher than any other engineered materials as well as native cornea, which exhibit an orthogonal laminated collagen structure and a good optical transmission.

Keywords
Collagen structure; Biomimetic material; Fibrous tissue; Biofilm; Soft tissue biomechanics; Cornea
First Page Preview
Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 13, May 2011, Pages 3358–3366
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us