fulltext.study @t Gmail

Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2

Paper ID Volume ID Publish Year Pages File Format Full-Text
7746 562 2010 10 PDF Available
Title
Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2
Abstract

Bioactive hydrogels formed by Michael-type addition reactions of end-functionalized poly(ethylene glycol) macromers with cysteine-containing peptides have been described as extracellular matrix mimetics and tissue engineering scaffolds. Although these materials have shown favorable behavior in vivo in tissue repair, we sought to develop materials formulations that would be more rapidly responsive to cell-induced enzymatic remodeling. In this study, protease-sensitive peptides that have increased kcat values were characterized and evaluated for their effects on gel degradability. Biochemical properties for soluble peptides and hydrogels were examined for matrix metalloproteinase (MMP)-1 and MMP-2. The most efficient peptide substrates in some cases overlap and in other cases differ between the two enzymes tested, and a range of kcat values was obtained. For each enzyme, hydrogels formed using the peptides with higher kcat values degraded faster than a reference with lower kcat. Fibroblasts showed increased cell spreading and proliferation when cultured in 3D hydrogels with faster degrading peptides, and more cell invasion from aortic ring segments embedded in the hydrogels was observed. These faster degrading gels should provide matrices that are easier for cells to remodel and lead to increased cellular infiltration and potentially more robust healing in vivo.

Keywords
Biodegradation; Biomimetic material; Cell spreading; Hydrogel; Matrix metalloproteinase; Peptide
First Page Preview
Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 30, October 2010, Pages 7836–7845
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us