fulltext.study @t Gmail

Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats

Paper ID Volume ID Publish Year Pages File Format Full-Text
7754 563 2012 13 PDF Available
Title
Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats
Abstract

Various attempts have been made to develop artificial conduits for nerve repair, but with limited success. We describe here conduits made from Bombyx mori regenerated silk protein, and containing luminal fibres of Spidrex®, a silk-based biomaterial with properties similar to those of spider silk. Assessment in vitro demonstrated that Spidrex® fibres support neurite outgrowth. For evaluation in vivo, silk conduits 10 mm in length and containing 0, 100, 200 or 300 luminal Spidrex® fibres, were implanted to bridge an 8 mm gap in the rat sciatic nerve. At 4 weeks, conduits containing 200 luminal Spidrex® fibres (PN200) supported 62% and 59% as much axon growth as autologous nerve graft controls at mid-conduit and distal nerve respectively. Furthermore, Spidrex® conduits displayed similar Schwann cell support and macrophage response to controls. At 12 weeks, animals implanted with PN200 conduits showed similar numbers of myelinated axons (81%) to controls, similar gastrocnemius muscle innervation, and similar hindpaw stance assessed by Catwalk footprint analysis. Plantar skin innervation was 73% of that of controls. PN200 Spidrex® conduits were also effective at bridging longer (11 and 13 mm) gaps. Our results show that Spidrex® conduits promote excellent axonal regeneration and function recovery, and may have potential for clinical application.

Keywords
Silk; Axonal regeneration; Peripheral nerve injury; Conduit; Catwalk; Target innervations
First Page Preview
Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 1, January 2012, Pages 59–71
Authors
, , , , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us