fulltext.study @t Gmail

Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response

Paper ID Volume ID Publish Year Pages File Format Full-Text
7770 563 2012 12 PDF Available
Title
Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response
Abstract

A Whispering Gallery Mode (WGM) biosensor was constructed to measure the adsorption of protein onto alkysilane self-assembled monolayers (SAMs) at solution concentrations unattainable with other techniques. The high sensitivity was provided by a WGM resonance excited in a silica microsphere that was functionalized with alkylsilane SAMs and integrated in a microfluidic flow cell under laminar flow conditions. It was found that FN adsorbed at biologically relevant surface densities, however, the adsorption kinetics and concentration dependent saturation values varied significantly from work published utilizing alkanethiol SAMs. Mathematical models were applied to the experimental results to interpret the observed kinetics of FN adsorption. Embryonic hippocampal neurons and skeletal myoblasts were cultured on the modified surfaces, a live–dead assay was used to determine the viability of the FN surfaces for cell culture, and major differences were noted in the biological response to the different SAMs. The high sensitivity and simplicity of the WGM biosensor, combined with its ability to quantify the adsorption of any dilute protein in a label-free assay, establishes the importance of this technology for the study of surface accretion and its effect on cellular function, which can affect biomaterials for both in vivo and in vitro applications.

Keywords
Biosensor; Biocompatibility; Computational fluid dynamics; Modeling; Protein adsorption; Surface modification
First Page Preview
Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 1, January 2012, Pages 225–236
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering