fulltext.study @t Gmail

Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles

Paper ID Volume ID Publish Year Pages File Format Full-Text
7779 563 2012 8 PDF Available
Title
Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles
Abstract

Selective packaging of plasmid DNA (pDNA) into folded rod or collapsed sphere structures in polyplex micelles was demonstrated by modulating the PLys segment length of poly(ethylene glycol)-block- poly(l-lysine) (PEG-PLys) block catiomers used for micelle formation. The two basic packaging structures correlated well to the integrity of double-stranded DNA contained within the micelles. Rod structures formed by the quantized folding mechanism, which results in dissociation of double-stranded DNA only at each fold. Collapsed sphere structures formed by substantial random disruption of the double-stranded DNA structure. Analysis of gene expression in a cell-free transcription/translation system, cultured cells and also skeletal muscle of mice showed that micelles containing pDNA packaged by quantized folding exhibited higher gene expression than naked pDNA and micelles containing collapsed pDNA. These results indicate that controlled packaging of pDNA into an appropriate structure is critical for achieving effective gene expression. Improved gene transfection and expression resulting from the quantized folding of pDNA within polyplex micelles is promising for application in therapeutic gene delivery systems.

Keywords
DNA; Micelle; Nanoparticle; Gene transfer; In vivo test; In vitro test
First Page Preview
Enhanced gene expression promoted by the quantized folding of pDNA within polyplex micelles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 1, January 2012, Pages 325–332
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us