fulltext.study @t Gmail

Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity

Paper ID Volume ID Publish Year Pages File Format Full-Text
7849 567 2010 12 PDF Available
Title
Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity
Abstract

A systematic investigation was performed on regulating materials properties and cell behavior using hybrid networks composed of amorphous poly(propylene fumarate) (PPF) and three poly(ɛ-caprolactone) diacrylates (PCLDAs) with variance in crystallinity and melting temperature. Through controlling both crosslinking density and crystallinity in the photo-crosslinked PPF/PCLDA blends, mechanical properties could be tuned efficiently in a wide range. For PCLDA synthesized from a low-molecular weight PCL diol precursor with a low crystallinity and a low melting point, crosslinks could completely suppress crystalline domains over the composition range in the PPF/PCLDA networks. Consequently, tensile, shear, torsional, and compression moduli all increased with the composition of PPF or the crosslinking density continuously for amorphous PPF/PCLDA networks. For PCLDAs synthesized using two PCL diols with higher molecular weights, crystallinity remained for the PCLDA compositions between ∼80% and 100%. Minimum moduli and tensile stress at break were found at the lowest required composition of PPF for suppressing crystallinity. Surface physicochemical properties and morphology of the crosslinked blend disks have been characterized and their capabilities of adsorbing proteins from cell culture medium have been determined. Using both mouse MC3T3-E1 cells and rat Schwann cell precursor line (SpL201) cells, cell responses to these polymer networks such as cell adhesion, spreading, and proliferation were found to be dramatically distinct on different polymer networks and demonstrated non-monotonic or parabolic dependence on the network composition, coincident with the composition dependence of the mechanical properties.

Keywords
Poly(propylene fumarate) (PPF); Poly(ɛ-caprolactone) diacrylate (PCLDA); Photo-crosslinking; Substrate stiffness; Cell–biomaterial interaction
First Page Preview
Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 29, October 2010, Pages 7423–7434
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us