fulltext.study @t Gmail

The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
7947 570 2010 9 PDF Available
Title
The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells
Abstract

The developmental potential of pluripotent stem cells is influenced by their local cellular microenvironment. To better understand the role of vascular endothelial growth factor (VEGFA) in the embryonic cellular microenvironment, we synthesized an artificial stem cell niche wherein VEGFA was immobilized in an agarose hydrogel. Agarose was first modified with coumarin-protected thiols. Upon exposure to ultra-violet excitation, the coumarin groups were cleaved leaving reactive thiols to couple with maleimide-activated VEGFA. Mouse embryonic stem cells (ESC) aggregates were encapsulated in VEGFA immobilized agarose and cultured for 7 days as free-floating aggregates under serum-free conditions. Encapsulated aggregates were assessed for their capacity to give rise to blood progenitor cells. In the presence of bone morphogenetic protein-4 (BMP-4), cells exposed to immobilized VEGFA upregulated mesodermal markers, brachyury and VEGF receptor 2 (T+VEGFR2+) by day 4, and expressed CD34 and CD41 (CD34+CD41+) on day 7. It was found that immobilized VEGFA treatment was more efficient at inducing blood progenitors (including colony forming cells) on a per molecule basis than soluble VEGFA. This work demonstrates the use of functionalized hydrogels to guide encapsulated ESCs toward blood progenitor cells and introduces a tool capable of recapitulating aspects of the embryonic microenvironment.

Keywords
Blood; Cell encapsulation; Hydrogel; Stem cell; Thiol; Flow cytometry
First Page Preview
The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 32, November 2010, Pages 8262–8270
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us