fulltext.study @t Gmail

The fate of ultrafast degrading polymeric implants in the brain

Paper ID Volume ID Publish Year Pages File Format Full-Text
8069 576 2011 8 PDF Available
Title
The fate of ultrafast degrading polymeric implants in the brain
Abstract

We have recently reported on an ultrafast degrading tyrosine-derived terpolymer that degrades and resorbs within hours, and is suitable for use in cortical neural prosthetic applications. Here we further characterize this polymer, and describe a new tyrosine-derived fast degrading terpolymer in which the poly(ethylene glycol) (PEG) is replaced by poly(trimethylene carbonate) (PTMC). This PTMC containing terpolymer showed similar degradation characteristics but its resorption was negligible in the same period. Thus, changes in the polymer chemistry allowed for the development of two ultrafast degrading polymers with distinct difference in resorption properties. The in vivo tissue response to both polymers used as intraparenchymal cortical devices was compared to poly(lactic-co-glycolic acid) (PLGA). Slow resorbing, indwelling implant resulted in continuous glial activation and loss of neural tissue. In contrast, the fast degrading tyrosine-derived terpolymer that is also fast resorbing, significantly reduced both the glial response in the implantation site and the neuronal exclusion zone. Such polymers allow for brain tissue recovery, thus render them suitable for neural interfacing applications.

Keywords
Brain tissue response; Biodegradation; Bioerosion; Ultrafast degrading polymers; Tyrosine-derived terpolymer
First Page Preview
The fate of ultrafast degrading polymeric implants in the brain
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 24, August 2011, Pages 5543–5550
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us