fulltext.study @t Gmail

Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
8101 577 2011 10 PDF Available
Title
Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles
Abstract

The generation of intracellular reactive oxygen species (ROS) was optically monitored using ROS-sensitive gold nanoprobes in response to an exposure of nanoparticles (NPs). Fluorescent dye-labeled hyaluronic acid was grafted onto the surface of gold nanoparticles (HF-AuNPs) for imaging intracellular ROS. The ultrasensitive detection of intracellular ROS was utilized as a powerful analytical tool to assess early cellular toxicities of monodisperse polystyrene (PS) particles with different sizes and different functional groups on the surface. The effect of PEGylation on the surface of PS NPs was also investigated by evaluating intracellular ROS generation. For various PS NPs, the extent of intracellular ROS was well correlated with cellular uptake, apoptosis inducing activity, and cytotoxic effect of NPs. In addition to the nanoparticles, commonly used polymeric gene carriers such as linear and branched polyethylenimine (PEI) were tested to analyze their extent of intracellular ROS generation related to cellular toxicity. This study demonstrated that sensitive and optical detection of intracellular ROS generation can provide a valuable toxicity index value for a wide range of NPs as an early indicator for cellular responses.

Keywords
Gold nanoprobes; Nanotoxicity; PEGylation; poly(ethylenimine); Reactive oxygen species (ROS)
First Page Preview
Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 10, April 2011, Pages 2556–2565
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us