fulltext.study @t Gmail

The effects of Runx2 immobilization on poly (ɛ-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro

Paper ID Volume ID Publish Year Pages File Format Full-Text
8127 578 2010 6 PDF Available
Title
The effects of Runx2 immobilization on poly (ɛ-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro
Abstract

In vivo regenerative gene therapy is a promising approach for bone regeneration and can help to address cell-source limitations through surgical implantation of osteoinductive materials and subsequent recruitment of host-derived cells. Localized viral delivery may reduce the risk of virus dispersion, enhance transduction efficiency, and reduce administration/injection dosing, which subsequently increases patient safety. In this manuscript, we present a custom-tailored strategy to immobilize adenovirus expressing runt-related transcription factor 2 (AdRunx2) by using reactive polymer coatings to enhance in vitro osteoblast differentiation of bone marrow stromal cells (BMSCs). A thin polymer film of poly[p-xylylene carboxylic acid pentafluorophenol ester-co-p-xylylene] equipped with amine-reactive active ester groups was deposited on the surface of poly (ɛ-caprolactone) (PCL) using the chemical vapor deposition (CVD) polymerization technique and then anti-adenovirus antibody was conjugated on the material with an amide chemical bond. Following antibody conjugation, AdRunx2 was conjugated to the PCL surface through antibody-antigen interaction. Osteoblast differentiation of BMSCs was induced by incubation in osteogenic medium. Alkaline phosphatase (ALP) activity, calcium deposition, and matrix mineralization were confirmed as markers of osteoblast formation. Incubation of the BMSCs in the presence of AdRunx2 modified PCL resulted in a 6.5-fold increase in ALP activity and significant increases in matrix mineralization when compared to controls. These results demonstrate that adenovirus vectors driving the expression of transcription factors can be delivered directly from biomaterials to direct cell differentiation.

Keywords
Regenerative gene therapy; Local immobilization; Osteogenesis; Bone marrow stromal cells; Biomaterials; Reactive coatings
First Page Preview
The effects of Runx2 immobilization on poly (ɛ-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 12, April 2010, Pages 3231–3236
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us