fulltext.study @t Gmail

Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization

Paper ID Volume ID Publish Year Pages File Format Full-Text
8176 579 2012 9 PDF Available
Title
Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization
Abstract

Injectable and biodegradable hydrogels have been increasingly studied for sustained drug delivery in various molecular therapies. However, it remains a challenge to attain desired delivery rate at injection sites due to local tissue pressures exerted on the soft hydrogels. Furthermore, there is often limited controllability of stiffness and degradation rates, which are key factors required for achieving desired drug release rate and therapeutic efficacy. This study presents a stiff and metastable poly(ethylene glycol) diacrylate (PEGDA)-poly(ethylene imine) (PEI) hydrogel which exhibits an elastic modulus equivalent to bulk plastic materials, and controllable degradation rate independent of its initial elastic modulus. Such unique stiffness was attained from the highly branched architecture of PEI, and the decoupled controllability of degradation rate was achieved by tuning the non-equilibrium swelling of the hydrogel. Furthermore, a single intramuscular administration of granulocyte colony stimulating factor (GCSF)-encapsulated PEGDA-PEI hydrogel extended the mobilization of mononuclear cells to four days. A larger yield of expanded CD34+ and CD31+ endothelial progenitor cells (EPCs) was also obtained as compared to the daily bolus administration. Overall, the hydrogel created in this study will be useful for the controlled and sustained delivery of a wide array of drug molecules.

Keywords
Michael-Addition; Poly(ethyleneimine); Rigidity; Degradation rate; Granulocyte colony stimulating factor (GCSF)
First Page Preview
Tuning the non-equilibrium state of a drug-encapsulated poly(ethylene glycol) hydrogel for stem and progenitor cell mobilization
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 7, March 2011, Pages 2004–2012
Authors
, , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us