fulltext.study @t Gmail

Towards ultraporous poly(l-lactide) scaffolds from quaternary immiscible polymer blends

Paper ID Volume ID Publish Year Pages File Format Full-Text
8178 580 2010 10 PDF Available
Title
Towards ultraporous poly(l-lactide) scaffolds from quaternary immiscible polymer blends
Abstract

Ultraporous poly(l-lactide) (PLLA) scaffolds were prepared by melt-processing quaternary ethylene propylene diene rubber/poly(ε-caprolactone)/polystyrene/poly(l-lactide) (EPDM/PCL/PS/PLLA) 45/45/5/5 %vol. polymer blends modified with a PS-b-PLLA diblock copolymer. The morphology consists of a PS + PLLA+copolymer sub-blend layer forming at the interface of the EPDM and PCL phases. Quiescent annealing and interfacial modification using the block copolymer are used to control the blend microstructure. The ultraporous structure is subsequently obtained by selectively extracting the EPDM, PS and PCL phases. The PLLA scaffolds modified with the PS-b-PLLA copolymer present themselves as fully interconnected porous networks with asymmetric channel walls, one side being smooth while the other is covered with an array of submicron-sized PLLA droplets. They are prepared with a high degree of control over the pore size, with averages ranging from 5 μm to over 100 μm and a specific surface from 9.1 to 23.1 m2/g of PLLA, as annealing is carried out from 0 to 60 min. The void volume reaches values as high as 95% and in all cases the shape and dimensions of the scaffolds are maintained with a high level of integrity. The proposed method represents a comprehensive approach towards the design and generation of porous PLLA scaffolds based on complex morphologies from melt-processed multiphase polymer systems.

Keywords
Polylactic acid; Porosity; Microstructure; Interface; Scaffold
First Page Preview
Towards ultraporous poly(l-lactide) scaffolds from quaternary immiscible polymer blends
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 22, August 2010, Pages 5719–5728
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us