fulltext.study @t Gmail

A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes

Paper ID Volume ID Publish Year Pages File Format Full-Text
8247 582 2011 8 PDF Available
Title
A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes
Abstract

Accurate and rapid recognition and separation of multiple types of biological targets such as molecules, cells, bacteria or viruses from complex sample mixtures is of great importance for a wide range of diagnostic and therapeutic strategies. To achieve this goal, a set of fluorescent, magnetic, dual-encoded multifunctional bioprobes has been constructed by co-embedding different-sized quantum dots and varying amounts of γ-Fe2O3 magnetic nanoparticles into swollen poly(styrene/acrylamide) copolymer nanospheres. The dual-encoded bioprobes, which possessed different photoluminescent property and magnetic susceptibility, were proven to be capable of simultaneously recognizing and separating multiple components from a complex sample when three kinds of lectins were used as the targets. The lectins were separated with high efficiency and kept their bioactivity during the process. Compared to the conventional batchwise separation, this method does not require a large number of sequential reaction steps, which is economical of time and can be very reagent-saving. By combining the multiplexing capability of quantum dots with the superparamagnetic properties of iron oxide nanoparticles, this dual-encoded technique is expected to open new opportunities in high-throughput and multiplex bioassays, such as cell sorting, proteomical and genomical applications, drug screening etc.

Keywords
Fluorescence; Magnetism; Nanocomposite; Biosensor
First Page Preview
A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 4, February 2011, Pages 1177–1184
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us