fulltext.study @t Gmail

In vitro model of mesenchymal condensation during chondrogenic development

Paper ID Volume ID Publish Year Pages File Format Full-Text
8308 585 2009 11 PDF Available
Title
In vitro model of mesenchymal condensation during chondrogenic development
Abstract

Mesenchymal condensation is a pre-requisite of chondrogenesis during embryonic development. The current understanding of chondrogenesis is limited in terms of chondrogenic condensation mechanisms. In particular, the role of matrix stiffness on homotypic cell–cell interactions leading to the establishment of distinct aggregated chondrogenic morphology from mesenchymal cells is unclear. An in vitro biomaterials-based model to assess the interactions of matrix stiffness on chondrogensis is described herein, where by sensing subtle variation in morphology and stiffness of nanofibrous silk protein matrixes human mesenchymal stem cells migrated and assumed aggregated morphologies, mimicking early stage chondrogenesis. This simple in vitro model system has potential to play a significant role to gain insight into underlying mechanisms of mesenchymal condensation steps during chondrogenesis, integrating concepts of developmental biology, biomaterials and tissue engineering.

Keywords
Electrospinning; Chondrogenesis; In vitro model system; Condensation
First Page Preview
In vitro model of mesenchymal condensation during chondrogenic development
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 33, November 2009, Pages 6530–6540
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us