fulltext.study @t Gmail

Maintenance of phenotype and function of cryopreserved bone-derived cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
8318 586 2011 11 PDF Available
Title
Maintenance of phenotype and function of cryopreserved bone-derived cells
Abstract

The emerging fields of tissue engineering and regenerative medicine require large numbers of cells for therapy. Although the properties of cells obtained from a variety of fresh tissues have been delineated, the knowledge regarding cryopreserved grafts-derived cells remains elusive. Previous studies have shown that living cells could be isolated from cryopreserved bone grafts. However, whether cryopreserved bone-derived cells can be applied in regenerative medicine is largely unknown. The present study was to evaluate the potential application of cryopreserved grafts-derived cells for tissue regeneration. We showed that cells derived from cryopreserved bone grafts could maintain good proliferation activity and osteogenic phenotype. The biological phenotype of these cells could be well preserved. The transplantation of cryopreserved bone-derived cells on scaffold could promote new bone formation in nude mice and enhance the osteointegration for dental implants in canine, which confirmed their osteogenic capacity, and showed that cells derived from cryopreserved bone were comparable to that of fresh bone in terms of the ability to promote osteogenesis in vivo. This work demonstrates that cryopreserved bone grafts may represent a novel, accessible source of cells for tissue regeneration therapy, and the results of our study may also stimulate the development of other cryopreservation techniques in basic and clinical studies.

Keywords
Cryopreservation; Bone; Cell; Tissue engineering; Regenerative medicine
First Page Preview
Maintenance of phenotype and function of cryopreserved bone-derived cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 15, May 2011, Pages 3739–3749
Authors
, , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us