fulltext.study @t Gmail

Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity

Paper ID Volume ID Publish Year Pages File Format Full-Text
836 67 2013 11 PDF Available
Title
Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity
Abstract

Materials currently used for the treatment of bone defects include ceramics, polymeric scaffolds and composites, which are often impregnated with recombinant growth factors and other bioactive substances. While these materials have seen instances of success, each has inherent shortcomings including prohibitive expense, poor protein stability, poorly defined growth factor release and less than desirable mechanical properties. We have developed a novel class of amino acid-based poly(ester urea)s (PEU) materials which are biodegradable in vivo and possess mechanical properties superior to conventionally used polyesters (<3.5 GPa) available currently to clinicians and medical providers. We report the use of a short peptide derived from osteogenic growth peptide (OGP) as a covalent crosslinker for the PEU materials. In addition to imparting specific bioactive signaling, our crosslinking studies show that the mechanical properties increase proportionally when 0.5% and 1.0% concentrations of the OGP crosslinker are added. Our results in vitro and in an in vivo subcutaneous rat model show the OGP-based crosslinkers, which are small fragments of growth factors that are normally soluble, exhibit enhanced proliferative activity, accelerated degradation properties and concentration dependent bioactivity when immobilized.

Keywords
Biomaterials; Degradable; Poly(ester urea); Osteogenic growth peptide; Tissue engineering
First Page Preview
Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 2, February 2013, Pages 5132–5142
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us