fulltext.study @t Gmail

Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
8372 588 2010 10 PDF Available
Title
Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering
Abstract

Poly(lactide-co-glycolide) (PLGA) has been widely used for scaffolding materials in tissue engineering. It degrades mainly via hydrolysis of the ester bonds into lactic acid and glycolic acid leading to the decrease in pH of the surrounding microenvironment. The current study was designed to quickly neutralize the acidic degradation products of PLGA fibrous scaffolds by incorporating tripolyphosphate (TPP) nanoparticles into PLGA fibers. A homogeneous mixture of PLGA and TPP was first obtained by water-in-oil emulsion–dispersion followed by freeze-drying. The dried blend was melt-spun to yield fibers which were processed into scaffolds and subsequently immersed into phosphate-buffered saline (PBS) to verify the degradation properties. The pH of the saline was monitored for a duration of 80 days. The amount of TPP was optimized to obtain a PLGA based scaffolds without acidic degradation problems. Cellular compatibility of the modified and pristine scaffolds was evaluated using rabbit adipose-derived stem cells (rASCs). It was shown that TPP particles within the fibers were roughly 100 nm in diameter and mainly located inside fibers instead of on the superficial layer. The acidic degradation of PT-16 and PT-64 (PT-X is termed when the monomer molar ratio of TPP to PLGA was 1:X) was significantly improved as the pH values of their respective solutions were maintained in a well neutralized state during the degradation. PT-64 and PT-16 scaffolds could well support the attachment and proliferation of rASCs. Hence, the incorporation of TPP nanoparticles via an emulsion–dispersion method could be an effective strategy to improve/adjust the acidic degradation of PLGA and further pave the way for clinical applications of such polyesters.

Keywords
PLGA; Degradation; Incorporation; Tripolyphosphate; Nanoparticles
First Page Preview
Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 19, July 2010, Pages 5100–5109
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us