fulltext.study @t Gmail

The growth of a vascular network inside a collagen–citric acid derivative hydrogel in rats

Paper ID Volume ID Publish Year Pages File Format Full-Text
8491 592 2009 8 PDF Available
Title
The growth of a vascular network inside a collagen–citric acid derivative hydrogel in rats
Abstract

Three-dimensional regenerative tissue with a certain bulk cannot survive without sufficient blood perfusion in vivo, so construction of a vascular system in regenerative tissue is a key technology in tissue engineering. In order to construct such a vascular system, we attempted to create a scaffold material that induces neovascular growth from the recipient bed into the material. This material, an ion complex gel matrix (IC gel) consisting of collagen and a citric acid derivative, enabled it to associate with basic fibroblast growth factor (bFGF). The IC gel was implanted in the subfascial space of the rat rectus muscle and excised 5 days later. Cross-sections of the excised samples were stained for von Willebrand factor, and then neovascular development into the gel was observed and also quantified by image analysis. These data showed that the IC gel markedly induced growth of vascular-rich tissue into the inside of the gel by day 5, which surpassed that after implantation of Matrigel® or gelated collagen. Further, combination with bFGF significantly enhanced the vascularization ability of IC gel. These findings suggest that IC gel functioned as a scaffold material for neovascular ingrowth and a reservoir of bFGF.

Keywords
Neovascularization; In vivo test; Collagen structure; Biodegradation; Scaffold; Fibroblast growth factor
First Page Preview
The growth of a vascular network inside a collagen–citric acid derivative hydrogel in rats
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 21, July 2009, Pages 3580–3587
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us