fulltext.study @t Gmail

Surface characterization of extracellular matrix scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
8504 595 2010 10 PDF Available
Title
Surface characterization of extracellular matrix scaffolds
Abstract

Extracellular matrix (ECM) scaffolds prepared from different tissue sources or using different methods have been demonstrated to have distinctive effects upon cell adhesion patterns and the ability to support and maintain differentiated phenotypes. It is unknown whether the molecular composition or the ultrastructure of the ECM plays a greater role in determining the phenotype of the cells with which it comes into contact. However, when implanted, the topology and ligand landscape of the material will determine the host molecules that bind and the type and behavior of cells that mediate the host response. Therefore, a comprehensive understanding of surface characteristics is essential in the design of scaffolds for specific clinical applications. The surface characteristics of ECM scaffolds derived from porcine urinary bladder, small intestine, and liver as well as the effects of two commonly used methods of chemical cross-linking upon UBM were investigated. Electron microscopy and time of flight secondary ion mass spectroscopy were used to examine the surface characteristics of the scaffolds. The results show that ECM scaffolds have unique morphologic and structural properties which are dependant on the organ or tissue from which the scaffold is harvested. Furthermore, the results show that the surface characteristics of an ECM scaffold are changed through chemical cross-linking.

Keywords
ECM (Extracellular matrix); Cross-linking, Surface analysis; SEM (Scanning electron microscopy); ToF-SIMS (Time of flight secondary ion mass spectroscopy); Scaffold
First Page Preview
Surface characterization of extracellular matrix scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 3, January 2010, Pages 428–437
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us