fulltext.study @t Gmail

Strong fiber-reinforced hydrogel ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
856 67 2013 6 PDF Available
Title
Strong fiber-reinforced hydrogel ☆
Abstract

In biological hydrogels, the gel matrix is usually reinforced with micro- or nanofibers, and the resulting composite is tough and strong. In contrast, synthetic hydrogels are weak and brittle, although they are highly elastic. The are many potential applications for strong synthetic hydrogels in medical devices, including as scaffolds for tissue growth. This work describes a new class of hydrogel composites reinforced with elastic fibers, giving them a cartilage-like structure. A three-dimensional rapid prototyping technique was used to form crossed “log-piles” of elastic fibers that are then impregnated with an epoxy-based hydrogel in order to form the fiber-reinforced gel. The fibrous construct improves the strength, modulus and toughness of the hydrogel, and also constrains the swelling. By altering the construct geometry and studying the effect on mechanical properties, we will develop the understanding needed to design strong hydrogels for biomedical devices and soft machines.

Keywords
Toughness; Biomimicking; Rapid prototyping; Reinforced hydrogels
First Page Preview
Strong fiber-reinforced hydrogel ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 2, February 2013, Pages 5313–5318
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us