fulltext.study @t Gmail

The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels

Paper ID Volume ID Publish Year Pages File Format Full-Text
8571 598 2010 12 PDF Available
Title
The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels
Abstract

Our research is focused on the design of hydrogel biomaterials that can be used for 3-D cell encapsulation and tissue engineering. In this study, our goal was to engineer a temperature-responsive biomaterial to possess bioactive properties using polymer and protein chemistry, and at the same time provide the biomaterial with susceptibility to cell-mediated remodeling. Toward this goal, we developed a biomimetic material that can harness the bioactive properties of fibrinogen and the unique structural properties of Pluronic®F127. Pluronic®F127 is a synthetic block copolymer that exhibits reverse thermal gelation (RTG) in response to small changes in ambient temperature. We conjugated fibrinogen to Pluronic®F127 to create a biosynthetic precursor with tunable physicochemical properties based on the relationship between the two constituents. A hydrogel matrix was formed from the fibrinogen-F127 adducts by free-radical polymerization using light activation (photo-polymerization). These materials displayed a reversible temperature-induced physical sol–gel transition and an irreversible light-activated chemical cross-linking. The susceptibility of this hydrogel biomaterial to protease degradation and consequent cell-mediated remodeling was controlled by the Pluronic®F127 constituent. The protein-based material also conveyed inductive signals to cells through bioactive sites on the fibrinogen backbone, as well as through structural properties such as the matrix modulus. We apply these materials as a tissue engineering hydrogel scaffold for 3-D in vitro culture of dermal fibroblasts in order to gain a better understanding of how the material bioactivity and matrix properties can independently affect cell morphology and remodeling.

Keywords
Fibrinogen; Fibroblast; Hydrogel; Polyethylene oxide; Pluronic; Scaffold
First Page Preview
The biocompatibility of Pluronic®F127 fibrinogen-based hydrogels
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 10, April 2010, Pages 2836–2847
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us