fulltext.study @t Gmail

The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes

Paper ID Volume ID Publish Year Pages File Format Full-Text
8614 599 2011 11 PDF Available
Title
The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes
Abstract

The in vitro labeling of cultured cells with nanomaterials is a frequent practice but the efficiency, specificity and cytotoxicity of labeling specific cell types using targeted nanoparticles has only rarely been investigated. In the present work, functionalized anionic lipid-coated iron oxide cores (magnetoliposomes (MLs)) bearing galactose moieties were used for the specific labeling of asialoglycoprotein receptor 1 (ASGPR-1)-expressing HepG2 cells. The optimal number of galactose moieties per particle (±26) was determined and uptake efficiency was compared with galactose-lacking anionic and cationic MLs. Using a blocking assay with free galactose, electron microscopy and co-cultures of HepG2 and non-ASGPR-1 expressing C17.2 cells, the specificity of the particles for the ASGPR-1 receptor was demonstrated. The intracellular localization of the galactose-bearing MLs was further verified by confocal microscopy. The non-toxic ML concentration was determined to be 400 μg Fe/ml. Finally, the use of these MLs for visualization of labelled cells by magnetic resonance imaging (MRI) was demonstrated. The data show a high uptake and specificity of the galactose-bearing MLs, whereas the cationic MLs remain primarily surface-associated. Thus, targeted MLs offer a successful alternative for cell labeling when cationic particles fail to be efficiently internalized.

Keywords
(Iron oxide) Nanoparticle; Magnetoliposome; Cytotoxicity; Cell labeling; Biomedical materials
First Page Preview
The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 6, February 2011, Pages 1748–1758
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us