fulltext.study @t Gmail

Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
8645 601 2009 7 PDF Available
Title
Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles
Abstract

The overlapping wavelength of photoluminescence (PL) of zinc oxide nanoparticles (ZnO NPs) and autofluorescence (AF) from the stratum corneum (SC) has for a long time held back researchers from investigating the chemically enhanced penetration pathways of ZnO NPs into the SC lipids. However, the non-linear polarization effect of second harmonic generation (SHG) may be used for ZnO NPs to be distinguished from the AF of the SC. This study combined the SHG of ZnO NPs and the AF of the SC to image the transdermal delivery of ZnO NPs under the chemical enhancer conditions of oleic acid (OA), ethanol (EtOH) and oleic acid–ethanol (OA–EtOH). In addition to qualitative imaging, the microtransport properties of ZnO NPs were quantified to give the enhancements of the vehicle-to-skin partition coefficient (K), the SHG intensity gradient (G) and the effective diffusion path length (L). The results showed that OA, EtOH and OA–EtOH were all capable of enhancing the transdermal delivery of ZnO NPs by increasing the intercellular lipid fluidity or extracting lipids from the SC.

Keywords
Two-photon microscopy; Second harmonic generation; ZnO nanoparticles; Chemical enhancer; Transdermal
First Page Preview
Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 16, June 2009, Pages 3002–3008
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering