fulltext.study @t Gmail

The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks

Paper ID Volume ID Publish Year Pages File Format Full-Text
8664 602 2010 8 PDF Available
Title
The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks
Abstract

Nanostructured materials provide a new dimension of interaction with biological systems that takes place on a sub-cellular level with a high degree of specificity. In the field of neuroscience the nanoscale corresponds to the size of synapses; the specific connections between brain cells. In this context, diamond-based materials have attracted much attention due to their extreme mechanical and electrical properties and their chemical inertness. Here the suitability of nanodiamond (ND) monolayers to act as a platform for neuronal growth is investigated. Neurons cultured on various ND-coated substrates perform remarkably well, and similar to those grown on standard protein-coated materials with respect to their initial cell attachment, sustained neurite outgrowth, cell-autonomous neuronal excitability and functionality of the resulting electrical networks. ND layering provides an excellent growth substrate on various materials for functional neuronal networks and bypasses the necessity of protein coating, which promises great potential for chronic medical implants.

Keywords
Diamond; Electrophysiology; Nanoparticle; Neural network
First Page Preview
The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 8, March 2010, Pages 2097–2104
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us