fulltext.study @t Gmail

The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia

Paper ID Volume ID Publish Year Pages File Format Full-Text
8679 602 2010 9 PDF Available
Title
The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia
Abstract

Acute myeloid leukaemia (AML) is a cancer of haematopoietic cells that develops in three-dimensional (3-D) bone marrow niches in vivo. The study of AML has been hampered by lack of appropriate ex vivo models that mimic this microenvironment. We hypothesised that fabrication and optimisation of suitable biomimetic scaffolds for culturing leukaemic cells ex vivo might facilitate the study of AML in its native 3-D niche. We evaluated the growth of three leukaemia subtype-specific cell lines, K-562, HL60 and Kasumi-6, on highly porous scaffolds fabricated from biodegradable and non-biodegradable polymeric materials, such as poly (L-lactic-co-glycolic acid) (PLGA), polyurethane (PU), poly (methyl-methacrylate), poly (d, l-lactade), poly (caprolactone), and polystyrene. Our results show that PLGA and PU supported the best seeding efficiency and leukaemic growth. Furthermore, the PLGA and PU scaffolds were coated with extracellular matrix (ECM) proteins, collagen type I (62.5 or 125 μg/ml) and fibronectin (25 or 50 μg/ml) to provide biorecognition signals. The 3 leukaemia subtype-specific lines grew best on PU scaffolds coated with 62.5 μg/ml collagen type I over 6 weeks in the absence of exogenous growth factors. In conclusion, PU-collagen scaffolds may provide a practical model to study the biology and treatment of primary AML in an ex vivo mimicry.

Keywords
Three-dimensional culture; Scaffold; Leukaemia culture; Haematopoiesis
First Page Preview
The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 8, March 2010, Pages 2243–2251
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us