fulltext.study @t Gmail

In vitro hemocompatibility of thin film nitinol in stenotic flow conditions

Paper ID Volume ID Publish Year Pages File Format Full-Text
8731 604 2010 8 PDF Available
Title
In vitro hemocompatibility of thin film nitinol in stenotic flow conditions
Abstract

Because of its low profile and biologically inert behavior, thin film nitinol (TFN) is ideally suited for use in construction of endovascular devices. We have developed a surface treatment for TFN designed to minimize platelet adhesion by creating a superhydrophilic surface. The hemocompatibility of expanded polytetrafluorethylene (ePTFE), untreated thin film nitinol (UTFN), and a surface treated superhydrophilic thin film nitinol (STFN) was compared using an in vitro circulation model with whole blood under flow conditions simulating a moderate arterial stenosis. Scanning electron microscopy analysis showed increased thrombus on ePTFE as compared to UTFN or STFN. Total blood product deposition was 6.3 ± 0.8 mg/cm2 for ePTFE, 4.5 ± 2.3 mg/cm2 for UTFN, and 2.9 ± 0.4 mg/cm2 for STFN (n = 12, p < 0.01). ELISA assay for fibrin showed 326 ± 42 μg/cm2 for ePTFE, 45.6 ± 7.4 μg/cm2 for UTFN, and 194 ± 25 μg/cm2 for STFN (n = 12, p < 0.01). Platelet deposition measured by fluorescent intensity was 79,000 20,000 AU/mm2 for ePTFE, 810 ± 190 AU/mm2 for UTFN, and 1600 ± 25 AU/mm2 for STFN (n = 10, p < 0.01). Mass spectrometry demonstrated a larger number of proteins on ePTFE as compared to either thin film. UTFN and STFN appear to attract significantly less thrombus than ePTFE. Given TFN’s low profile and our previously demonstrated ability to place TFN covered stents in vivo, it is an excellent candidate for use in next-generation endovascular stents grafts.

Keywords
Nitinol; Thin; Film; Hemocompatibility; Endovascular; Stent
First Page Preview
In vitro hemocompatibility of thin film nitinol in stenotic flow conditions
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 34, December 2010, Pages 8864–8871
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us