fulltext.study @t Gmail

Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice

Paper ID Volume ID Publish Year Pages File Format Full-Text
8752 604 2010 9 PDF Available
Title
Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice
Abstract

Diabetes can diminish the responsiveness to angiogenic factors (e.g., VEGF) important for wound healing and the treatment of ischemic diseases, and this study investigated the hypothesis that this effect can be reversed by altering Notch signaling. Aortic endothelial cells (ECs) isolated from diabetic mice demonstrated reduced sprouting capability in vitro, but adding a Notch inhibitor (DAPT) led to cell-density and VEGF-dose dependent enhancement of proliferation, migration and sprouting, in both 2-D and 3-D cultures, as compared to VEGF alone. The in vivo effects of VEGF and DAPT were tested in the ischemic hind limbs of diabetic mice. Combining VEGF and DAPT delivery resulted in increased blood vessel density (∼150%) and improved tissue perfusion (∼160%), as compared to VEGF alone. To examine if DAPT would interfere with vessel maturation, DAPT was also delivered with a combination of VEGF and platelet derived growth factor (PDGF). DAPT and PDGF did not interfere with the effects of the other, and highly functional and mature networks of vessels could be formed with appropriate delivery. In summary, modulating Notch signaling enhances neovascularization and perfusion recovery in diabetic mice suffering from ischemia, suggesting this approach could have utility for human diabetics.

Keywords
VEGF; Angiogenesis; Notch Signaling; Diabetes; Ischemia; Alginate
First Page Preview
Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 34, December 2010, Pages 9048–9056
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us