fulltext.study @t Gmail

Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends

Paper ID Volume ID Publish Year Pages File Format Full-Text
8834 608 2010 9 PDF Available
Title
Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends
Abstract

The preparation of phosphazene tissue engineering scaffolds with bioactive side groups has been accomplished using the biological buffer, choline chloride. Mixed-substituent phosphazene cyclic trimers (as model systems) and polymers with choline chloride and glycine ethyl ester, alanine ethyl ester, valine ethyl ester, or phenylalanine ethyl ester were synthesized. Two different synthetic protocols were examined. A sodium hydride mediated route resulted in polyphosphazenes with a low choline content, while a cesium carbonate mediated process produced polyphosphazenes with higher choline content. The phosphazene structures and physical properties were studied using multinuclear NMR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) techniques. The resultant polymers were then blended with PLGA (50:50) or PLGA (85:15) and characterized by DSC analysis and scanning electron microscopy (SEM). Polymer products obtained via the sodium hydride route produced miscible blends with both ratios of PLGA, while the cesium carbonate route yielded products with reduced blend miscibility. Heterophase hydrolysis experiments in aqueous media revealed that the polymer blends hydrolyzed to near-neutral pH media (∼5.8 to 6.8). The effect of different molecular structures on cellular adhesion showed osteoblast proliferation with an elevated osteoblast phenotype expression compared to PLGA over a 21-day culture period.

Keywords
Polyphosphazenes; Choline chloride; Biomaterials; Amino acid; Osteoblast; Poly(lactic-co-glycolic acid)
First Page Preview
Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 33, November 2010, Pages 8507–8515
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us