fulltext.study @t Gmail

The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions

Paper ID Volume ID Publish Year Pages File Format Full-Text
8838 608 2010 10 PDF Available
Title
The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions
Abstract

Photo-functionalized radical reactions on TiO2 have been correlated with adsorption of organic impurities and decreasing hydrophilicity of titanium-based biomaterials. Such reactive oxygen species (ROS) spontaneously generated on oxidized titanium surfaces may also have important roles against time-dependent degradation of biological ability and adherent micro-organisms. This study examined in vitro biological ability as a function of time and antimicrobial activity on oxidized titanium surfaces without photo-functionalization. Mechanically polished titanium and thermally oxidized titanium surfaces that had been stored for 4 wks showed adsorbed organic impurities with decreased surface hydrophilicity. Even after the storage period, anodically oxidized titanium surfaces enabled super-hydrophilicity without adsorption of organic impurities, because of the ROS and the hydrophilic functional groups generated on the surfaces. The osteogenic gene expressions of osteoblasts cultured on anodically oxidized titanium surfaces with or without storage were significantly higher than those on thermally oxidized titanium and polished titanium surfaces. Titanium surfaces anodically oxidized in a solution with chloride achieved antimicrobial activity against an oral microorganism due to the amount of ROS generated on the surface. Thus, titanium anodically oxidized in solution with chloride may have potential use for titanium-based internal fixation devices.

Keywords
Titanium; Superoxide; Cell culture; Osteoblast; Antimicrobial
First Page Preview
The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 31, Issue 33, November 2010, Pages 8546–8555
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us