fulltext.study @t Gmail

Surface mineralization of Ti6Al4V substrates with calcium apatites for the retention and local delivery of recombinant human bone morphogenetic protein-2

Paper ID Volume ID Publish Year Pages File Format Full-Text
894 68 2011 8 PDF Available
Title
Surface mineralization of Ti6Al4V substrates with calcium apatites for the retention and local delivery of recombinant human bone morphogenetic protein-2
Abstract

Titanium alloys are prevalently used as orthopedic prosthetics. Inadequate bone–implant interactions can lead to premature prosthetic loosening and implant failure. Local delivery of osteogenic therapeutics promoting osteointegration of the implant is an attractive strategy to address this clinical challenge. Given the affinity of calcium apatites for bone matrix proteins we hypothesize that titanium alloys surface mineralized with calcium apatites should be explored for the retention and local delivery of osteogenic recombinant human bone morphogenetic protein-2 (rhBMP-2). Using a heterogeneous surface nucleation and growth process driven by the gradual pH elevation of an acidic solution of hydroxyapatite via thermal decomposition of urea, Ti6Al4V substrates were surface mineralized with calcium apatite domains exhibiting good affinity for the substrate. The microstructures, size and surface coverage of the mineral domains as a function of the in vitro mineralization conditions were examined by light and scanning electron microscopy and the surface calcium ion content quantified. An optimal mineralization condition was identified to rapidly (<10 h) achieve surface mineral coverage far superior to those accomplished by week long incubation in simulated body fluids. In vitro retention–release profiles of rhBMP-2 from the mineralized and unmineralized Ti6Al4V, determined by an enzyme-linked immunosorbent assay, supported a higher degree of retention of rhBMP-2 on the mineralized substrate. The rhBMP-2 retained on the mineralized substrate after 24 h incubation in phosphate-buffered saline remained bioactive, as indicated by its ability to induce osteogenic transdifferentiation of C2C12 myoblasts attached to the substrate. This mineralization technique could also be applied to the surface mineralization of calcium apatites on dense tantalum and titanium and porous titanium substrates.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (75 K)Download as PowerPoint slide

Keywords
Biomineralization; Titanium alloys; Recombinant human bone morphogenetic protein-2; Osteoinductivity; Calcium apatite
First Page Preview
Surface mineralization of Ti6Al4V substrates with calcium apatites for the retention and local delivery of recombinant human bone morphogenetic protein-2
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 9, September 2011, Pages 3488–3495
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us