fulltext.study @t Gmail

Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine

Paper ID Volume ID Publish Year Pages File Format Full-Text
8954 610 2009 10 PDF Available
Title
Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine
Abstract

For a non-viral gene delivery system to be clinically effective, it should be non-toxic, compatible with biological components, and highly efficient in gene transfection. With this goal in mind, we investigated the gene delivery efficiency of a ternary complex consisting of DNA, an intracellularly degradable polycation, and sodium hyaluronate (DPH complex). Here, we report that the DPH ternary complex achieved significantly higher transfection efficiency than other polymer systems, especially in the presence of serum. The high transfection efficiency and serum tolerance of DPH are attributed to a unique interplay between CLPEI and HA, which leads to (i) the improved stability of DNA in the extracellular environment and at the early stage of intracellular trafficking and (ii) timely dissociation of the DNA–polymer complex. This study reinforces findings of earlier studies that emphasized each step as a bottleneck for efficient gene delivery; yet, it is the first to show that it is possible to overcome these obstacles simultaneously by taking advantage of two distinctive approaches.

Keywords
Non-viral gene delivery; Crosslinked polyethyleneimine; Sodium hyaluronate; Extra- and intracellular stabilities; DNA unpacking
First Page Preview
Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 29, October 2009, Pages 5834–5843
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us