fulltext.study @t Gmail

Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation

Paper ID Volume ID Publish Year Pages File Format Full-Text
897 68 2011 8 PDF Available
Title
Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation
Abstract

In the present work Zn–Mg alloys containing up to 3 wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn–Al–Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150 MPa and 2%, respectively, were achieved at Mg contents of approximately 1 wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn–Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc.

Keywords
Biodegradable material; Zinc; Bone fixation; Mechanical properties; Corrosion
First Page Preview
Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 9, September 2011, Pages 3515–3522
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us