fulltext.study @t Gmail

A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs

Paper ID Volume ID Publish Year Pages File Format Full-Text
8976 611 2009 10 PDF Available
Title
A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs
Abstract

The hydrophilic nature of hydrogel matrices makes them disadvantageous to entrap poorly soluble therapeutic agents and greatly restricts their applications as drug-delivery systems. In this study, we demonstrated that sustained delivery of lipophilic drugs in hydrogel-based devices can be readily achieved by enhancing retention of drugs within micelles. This nanoscale drug-entrapment strategy was applied to develop a polymeric drug-eluting stent. Sirolimus, a lipophilic anti-proliferative/immunosuppressive drug, was entrapped into the hydrophobic core of Pluronic L121 micelles and then blended in a chitosan-based strip and crosslinked by an epoxy compound to fabricate test stents. It was found that the use of such a nanoscale drug-entrapment strategy was able to significantly increase the loading efficiency of lipophilic drugs, prevent the drug from aggregation and beneficially reduce its initial burst release; thus, the duration of drug release was extended considerably. When implanting the stent in rabbit infrarenal abdominal aortas, in-stent restenosis was markedly reduced and less inflammatory reaction was observed, while unfavorable effects such as delayed endothelial healing caused by the overdose of sirolimus could be significantly evaded.

Keywords
Hydrogel; Drug-eluting stent; Micelle; Drug delivery; Chitosan
First Page Preview
A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 11, April 2009, Pages 2102–2111
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us