fulltext.study @t Gmail

Poly(amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery

Paper ID Volume ID Publish Year Pages File Format Full-Text
8977 611 2009 10 PDF Available
Title
Poly(amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery
Abstract

Understanding and improving drug release kinetics from dendrimer–drug conjugates are key steps to improve their in vivo efficacy. N-Acetyl cysteine (NAC) is an anti-inflammatory agent with significant potential for clinical use in the treatment of neuroinflammation, stroke and cerebral palsy. There is a need for delivery of NAC which can enhance its efficacy, reduce dosage and prevent it from binding plasma proteins. For this purpose, a poly(amidoamine) dendrimer–NAC conjugate that contains a disulfide linkage was synthesized and evaluated for its release kinetics in the presence of glutathione (GSH), cysteine (Cys), and bovine serum albumin (BSA) at both physiological and lysosomal pH. The results indicate that the prepared conjugate can deliver ∼60% of its NAC payload within 1 h at intracellular GSH concentrations at physiological pH, whereas the conjugate did not release any drug at plasma GSH levels. The stability of the conjugate in the presence of bovine serum albumin at plasma concentrations was also demonstrated. The efficacy of the dendrimer–NAC conjugate was measured in activated microglial cells (target cells in vivo) using the reactive oxygen species (ROS) assay. The conjugates showed an order of magnitude increase in antioxidant activity compared to free drug. When combined with intrinsic and ligand-based targeting with dendrimers, these types of GSH sensitive nanodevices can lead to improved drug release profiles and in vivo efficacy.

Keywords
Dendrimers; PAMAM dendrimers; Neuroinflammation; N-Acetyl cysteine; Intracellular drug delivery; Glutathione-sensitive release
First Page Preview
Poly(amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 30, Issue 11, April 2009, Pages 2112–2121
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us