fulltext.study @t Gmail

A corrosion model for bioabsorbable metallic stents

Paper ID Volume ID Publish Year Pages File Format Full-Text
898 68 2011 11 PDF Available
Title
A corrosion model for bioabsorbable metallic stents
Abstract

In this study a numerical model is developed to predict the effects of corrosion on the mechanical integrity of bioabsorbable metallic stents. To calibrate the model, the effects of corrosion on the integrity of biodegradable metallic foils are assessed experimentally. In addition, the effects of mechanical loading on the corrosion behaviour of the foil samples are determined. A phenomenological corrosion model is developed and applied within a finite element framework, allowing for the analysis of complex three-dimensional structures. The model is used to predict the performance of a bioabsorbable stent in an idealized arterial geometry as it is subject to corrosion over time. The effects of homogeneous and heterogeneous corrosion processes on long-term stent scaffolding ability are contrasted based on model predictions.

Keywords
Biodegradable magnesium; Finite element; Pitting corrosion; Damage modelling; Coronary stent
First Page Preview
A corrosion model for bioabsorbable metallic stents
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 7, Issue 9, September 2011, Pages 3523–3533
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us